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A MIXED-INTEGER PDE-CONSTRAINED OPTIMIZATION
FORMULATION FOR ELECTROMAGNETIC CLOAKING ˚

RYAN H. VOGT: , SVEN LEYFFER; , AND TODD MUNSON§

Abstract. We formulate a mixed-integer partial-differential equation constrained optimization
problem for designing an electromagnetic cloak governed by the 2D Helmholtz equation with absorb-
ing boundary conditions. Our formulation is an alternative to the topology optimization formulation
of electromagnetic cloaking design. We extend the formulation to include uncertainty with respect
to the angle of the incidence wave, and we develop a mixed-integer trust-region approach for solving
both the deterministic and the uncertain formulation. We present detailed numerical results that
show that our trust-region approach obtains effective cloaks.

Key words. PDE-constrained optimization, mixed-integer nonlinear optimization, Helmholtz
equation, electromagnetic cloaking.

AMS subject classifications. 35J05, 49M37, 90C30

1 Introduction Since the study of optics began, the ability to control the prop-
erties of light with materials found in nature has been limited. The introduction of
metamaterials, which cannot be found in nature, made the creation of electromagnetic
cloaks feasible and brought a strong interest to this field of study [17]. The goal of an
electromagnetic cloak on an object is for the light to flow around the object, rather
than being scattered by the object, causing the object to optically disappear. Numer-
ical simulations and experiments reported in 2006 and 2007 highlighted advancements
in the construction of electromagnetic cloaks [5, 7]; and experiments reported in [17]
have established the first practical implementation of an electromagnetic cloak over a
small-frequency band . While this cloak was unsuccessful in obtaining perfect cloaking
of a copper cylinder, the experiments showed the ability to decrease the shadow of an
object, getting closer to resembling empty space, thus reinforcing the theory of elec-
tromagnetic cloaking and the practicality of an implementation. In [6] the authors
presented an in-depth summary of electromagnetic cloaking by means of metama-
terials. Highlights include several key experiments, and also a discussion of future
directions for electromagnetic cloaking, especially in the area of cloaking for a large
frequency band, which has not yet been observed. Recently, experimental observa-
tions established the construction of electromagnetic cloaks which are not dependent
on prior knowledge of the incidence wave [18].

In this paper, we study the design of electromagnetic cloaks by formulating
and solving a mixed-integer partial-differential equation constrained optimization
(MIPDECO) problem. The objective is to minimize the integral of the response
in the region we wish to cloak. The constraints include a 2D Helmholtz equation with
absorbing boundary conditions for each component of the complex-valued scattering
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wave that are parameterized by the design of the electromagnetic cloak. The design
is obtained by using binary variables that determine whether a cell in the system is
filled with material or not. The cloak design depends on the region to cloak, the angle
of the incidence wave, the cloaking material, and the wavenumber.

We extend the cloak design by including uncertainty with respect to the angle
of attack, leading to a stochastic programming formulation where we minimize the
expected value of the objective function with respect to a discrete set of angles.

We solve the resulting combinatorial optimization problem in two steps. The
first step relaxes the binary variables, solves the relaxation, and applies a rounding
heuristic to obtain an initial design. The second step consists of a set of trust-region
iterations to improve upon the initial design. Our approach replaces the large-scale
mixed-integer nonlinear program (MINLP) by a sequence of easier linear knapsack
problems that can be solved in polynomial time.

Paper Outline. In Section 2 we define the infinite-dimensional electromagnetic
cloaking problem for a nominal wave angle. We then extend this formulation to
an optimization problem under uncertainty that can account for uncertainty in the
angle of the incidence wave, and we compute sensitivities with respect to the design
variables that are needed in our optimization approach. In Section 3 we derive a finite-
dimensional optimal design problem by discretizing the PDE using a finite-element
approach, resulting in a large-scale MINLP. Next, we present an approach to solve the
relaxed MINLP. In Section 4 we motivate a simple rounding heuristic and describe
our trust-region steepest-descent algorithm. We provide numerical experiments in
Section 5 to demonstrate the success of our trust-region method, and we comment on
the computational effort to solve our problems. We conclude with a brief summary in
Section 6. Detailed numerical results are presented in the electronic supplement SM1.

2 Electromagnetic Cloaking Design In this section we review the infinite-
dimensional cloaking design problem. We extend the nominal design and propose a
stochastic optimization formulation for the design under uncertainty. We also show
how adjoints of the problems are derived. These adjoints are needed for the solution
of the continuous relaxation and for our proposed trust-region method.

2.1 Formulation of the Nominal Electromagnetic Cloaking Problem
We consider the design of an electromagnetic cloak from [11], where we aim to de-
termine the optimal topology. We let D Ă R2 be the computational domain and
D0 Ă D be the part of the domain that we wish to cloak. We let pD Ă D´D0 be the
subregion in which we can design the cloak and Ω Ă pD be the topology of the cloak.
The optimal topology is determined by solving the following topology optimization
problem that aims to minimize the response due to the incidence wave in D0 subject
to the Helmholtz equation in D:

(2.1)

minimize
u,ΩĂ pD

1

2
}u` suθ}

2
2,D0

subject to ´∆u´ k2
0

`

1` q1Ω

˘

u “ k2
01Ωsuθ in D

Bu

Bn
´ ik0u “ 0 on BD,

where i “
?
´1, BD is the boundary of the computational domain and

suθpx, yq “ exppik0px cospθq ` y sinpθqqq(2.2)
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is the incidence wave in direction d “ pcospθq, sinpθqq, with wave number k0. The
angle θ at which the incidence wave approaches the cloak is measured from the x-axis,
and we refer to θ as the nominal angle of attack. The state variable u represents the
electromagnetic field intensity, and the parameter q is the electromagnetic permitivity
difference between Ω, the part of the cloak filled with material, and pD ´ Ω the part
of the cloak without material.

When manufacturing cloaks, there is typically a lower bound on the size of the
features in the cloak, Ω. We partition the cloak Ω into a finite number of uniform
squares, Ωn, for n “ 1, . . . , N . We refer to this partition as the control mesh and
assume that

Ω “
N
ď

n“1

Ωn and
`

ΩnzBΩn
˘

X
`

ΩpzBΩp
˘

“ H for n ‰ p;

see Figure 1a for an illustration.
We represent the decision of whether or not to fill a square Ωn Ă Ω by a binary

(control) variable vn P t0, 1u for n “ 1, . . . , N , and we define the indicator function
1Ωn

for Ωn as

(2.3) 1Ωn
px, yq “

#

1 if px, yq P Ωn

0 otherwise,

for n “ 1...N . The resulting reformulation of (2.1) can be rewritten as the MIPDECO

(2.4)

minimize
u,v,w

1

2
}u` suθ}

2
2,D0

subject to ´∆u´ k2
0p1` qwqu “ k2

0qwsuθ in D

Bu

Bn
´ ik0u “ 0 on BD

w “
N
ÿ

n“1

vn1ΩnzBΩn

vn P t0, 1u @n “ 1, . . . , N,

where the defined control, w, now takes the place of the topological variable, Ω. In
this formulation, we have a fixed finite number of binary variables vn that represent
the design. Because u, ūθ : R2 Ñ C is complex valued, we split u and ūθ into its real
and imaginary parts, u “ uRe` iuIm, resulting in two separate PDEs for the real and
the imaginary part, respectively.

In general, we have an mˆm control mesh made up of N “ m2 binary variables.
We illustrate a sample design in Figure 1a, where red indicates material and blue
indicates no material.

2.2 Optimal Design for Electromagnetic Cloaking under Uncertainty
Here, we extend the optimal design problem to account for uncertainty in the incidence
angle or angle of attack, θ. We formulate an optimization problem to create a design
that can effectively cloak a given region even if the incidence angle of the wave changes.

To account for uncertainty in the design, we generalize problem (2.4) to allow a
range of incidence angles θ and we regard the incidence angle as a random variable.
We can then formulate an optimization problem that minimizes, for example, the
expected value of the effectiveness of the cloak. We let pΘ,F , P q be a triple of sample

3



Ω̂1 Ω̂2 Ω̂3 Ω̂4

Ω̂5 Ω̂6 Ω̂7 Ω̂8

Ω̂9 Ω̂10 Ω̂11 Ω̂12

Ω̂13 Ω̂14 Ω̂15 Ω̂16

D

Ω̂

D0

(a) Cloak Illustration (b) Finite-Element Grid Illustration

Fig. 1: 1a: Illustration of a 4ˆ4 grid of control elements in which the goal is to
cloak the region D0, in this case a circle in the top right corner of the domain. 1b:
Illustration of the state and adjoint finite-element method (FEM) discretization. Each
control element (blue) is composed of eight triangular finite elements. In the FEM
approach we represent each control element as a constant with value vn. The state
and adjoint variables are defined on the finite-element mesh.

space, σ-algebra, and probability measure, and we formulate the following stochastic
optimization problem:

(2.5)

minimize
u,v,w

J pu, v, wq “ Eθ

„

1

2
}uθ ` suθ}

2
2,D0



subject to ´∆uθ ´ k
2
0p1` qwquθ “ k2

0qwsuθ in D, @θ P Θ

Buθ
Bn

´ ik0uθ “ 0 on BD, @θ P Θ

w “
N
ÿ

n“1

vn1ΩnzBΩn

vn “ t0, 1u @n “ 1, . . . , N,

where Eθr¨s is the expectation with respect to the random variable θ and uθ “ uθpvq
is the solution of the PDE for a given control, v, and incidence angle, θ. Problem
(2.5) has a structure similar to that of a two-stage stochastic program if we interpret
the controls w and v as the first-stage decision variables, and the states uθ as the
second-stage variables. However, there is no optimization in the second stage because
w, v, and θ uniquely determine uθ. To approximate the expectation in (2.5), we select
a finite set of s angles denoted by the set Θpsq Ă Θ, for example,

Θpsq “

"

θj
ˇ

ˇ θj “
πj

2s
, j “ 0, . . . , s

*

,

and we replace the expectation by the sample average mean. We assume that each θj
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has a probability Pj of occurring, and we assume that all angles of attack are equally
likely, Pj “

1
|Θpsq| (though this assumption is readily relaxed). We can interpret Θpsq

as a discretization of a uniform distribution over the interval of interest. We now
rewrite our cloaking optimization problem for the finite set Θpsq as
(2.6)

minimize
upjq,v,w

J pupjq, v, wq “ 1

2|Θpsq|

s
ÿ

j“0

}upjq ` supjq}22,D0

subject to ´∆upjq ´ k2
0p1` qwqu

pjq “ k2
0qwsu

pjq in D, @j “ 0, . . . , s

Bupjq

Bn
´ ik0u

pjq “ 0 on BD, @j “ 0, . . . , s

w “
N
ÿ

n“1

vn1ΩnzBΩn

vn “ t0, 1u @n “ 1, . . . , N.

where upjq is the state corresponding to the jth scenario, θj , and the incidence wave
associated with θj is defined as

(2.7) supjqpx, yq “ exp pik0px cospθjq ` y sinpθjqqq , @j “ 0, . . . , s.

This stochastic program has 2|Θpsq| state variables and 2|Θpsq| adjoint variables.
The evaluation of the objective function and gradient of (2.5) requires the solution of
4|Θpsq| PDEs for each fixed v.

2.3 Weak Adjoint and Gradient Equations Our method for solving (2.6)
is based on solving the continuous relaxation followed by a rounding step and an incre-
mental trust-region improvement algorithm. Both steps require computing gradients
with respect to the control variables v. Here, we present the derivation of the weak
state and weak adjoint equation for the uncertain problem (the derivation for the
easier nominal problem follows in a similar way). In addition we provide the strong
gradient derivation for (2.5) using the adjoint approach for calculating the gradient
for the continuous relaxation (0 ď v ď 1). We begin by formally defining the strong
Lagrangian L of (2.6) as

(2.8)

LpupjqRe , u
pjq
Im , v;λ

pjq
Re , λ

pjq
Im , θq

“
1

2|Θpsq|

ˆ s
ÿ

j“0

`

ż

D0

`

u
pjq
Re ` su

pjq
Re

˘2
`
`

u
pjq
Im ` su

pjq
Im

˘2
dD0

˙

`

s
ÿ

j“0

A

λ
pjq
Re ,

´

´∆u
pjq
Re ´ k

2
0p1` qwqu

pjq
Re ´ k

2
0qwsu

pjq
Re

¯E

L2pDq

`

s
ÿ

j“0

A

λ
pjq
Im ,

´

´∆u
pjq
Im ´ k

2
0p1` qwqu

pjq
Im ´ k

2
0qwsu

pjq
Im

¯E

L2pDq
,

where x¨, ¨yL2pDq is the L2 inner product over D and λ
pjq
Re , λ

pjq
Im are the adjoint vari-

ables for the jth real and imaginary state equation respectively. In (2.8) the strong

Lagrangian is defined: we assume that the pairs u
pjq
Re , u

pjq
Im P C2pDq are twice con-

tinuously differentiable. We weaken this regularity assumption because we intend to
search for weak solutions with the finite-element method. Next, we derive the weak
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form of the Lagrangian by applying Green’s theorem to the two constraint terms:

(2.9)

s
ÿ

j“0

A

λ
pjq
Re ,

´

´∆u
pjq
Re ´ k

2
0p1` qwqu

pjq
Re ´ k

2
0qwsu

pjq
Re

¯E

L2pDq

“

s
ÿ

j“0

„
ż

D

λ
pjq
Re

´

´∆u
pjq
Re ´ k

2
0p1` qwqu

pjq
Re ´ k

2
0qwsu

pjq
Re

¯

dD



“

s
ÿ

j“0

„
ż

D

∇upjqRe ¨∇λ
pjq
RedD `

ż

BD

k0u
pjq
Imλ

pjq
RedBD

´

ż

D

λ
pjq
Re

ˆ

k2
0p1` qwqu

pjq
Re ` k

2
0qwsu

pjq
Re

˙

dD



and

(2.10)

s
ÿ

j“0

„

A

λ
pjq
Im ,

´

´∆u
pjq
Im ´ k

2
0p1` qwqu

pjq
Im ´ k

2
0qwsu

pjq
Im

¯E

L2pDq



“

s
ÿ

j“0

„
ż

D

λ
pjq
Im

`

´∆u
pjq
Im ´ k

2
0p1` qwqu

pjq
Im ´ k

2
0qwsu

pjq
ImdD

˘



“

s
ÿ

j“0

„
ż

D

∇upjqIm ¨∇λ
pjq
ImdD ´

ż

BD

k0u
pjq
Reλ

pjq
ImdBD

´

ż

D

λ
pjq
Im

ˆ

k2
0p1` qwqu

pjq
Im ` k

2
0qwsu

pjq
Im

˙

dD



.

We substitute (2.9) and (2.10) into (2.8) and obtain the weak Lagrangian:

(2.11)

LpupjqRe , u
pjq
Im , v, λ

pjq
Re , λ

pjq
Im , θq

“
1

2|Θpsq|

ˆ s
ÿ

j“0

`

ż

D0

`

u
pjq
Re ` su

pjq
Re

˘2
`
`

u
pjq
Im ` su

pjq
Im

˘2
dD0

˘

˙

`

s
ÿ

j“0

„
ż

D

∇upjqRe ¨∇λ
pjq
RedD `

ż

BD

k0u
pjq
Imλ

pjq
RedBD

´

ż

D

“

λ
pjq
Re

“

k2
0p1` qwqu

pjq
Re ` k

2
0qwsu

pjq
Re

‰‰

dD



`

s
ÿ

j“0

„
ż

D

∇upjqIm ¨∇λ
pjq
ImdD ´

ż

BD

k0u
pjq
Reλ

pjq
ImdBD

´

ż

D

“

λ
pjq
Im

“

k2
0p1` qwqu

pjq
Im ` k

2
0qwsu

pjq
Im

‰‰

dD



.

In the final form (2.11), we assume that u
pjq
Re , u

pjq
Im P H1pDq, where H1pDq :“ W 1,2 is

the Sobolev space of all functions that are L2pDq (square integrable) and whose weak
derivative in the sense of distributions is also in L2pDq. To find the sensitivities of the
objective function, J , with respect to v, we exploit the fact that there exists a unique
w for any choice of v and that (under suitable conditions on k0) there exists a unique
u for any v. We start by deriving the weak state equations, which are obtained by

taking variations with respect to λ̃
pjq
Re , λ̃

pjq
Im for all j “ 0, ..., s:

0 “ L
λ

pjq

Re

rλ̃
pjq
Re s “

ż

D

∇upjqRe ¨∇λ̃
pjq
RedD `

ż

BD

k0u
pjq
Im λ̃

pjq
RedBD(2.12)
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´

ż

D

λ̃
pjq
Re

“

k2
0p1` qwqu

pjq
Re ` k

2
0qwsu

pjq
Re

‰

dD, @λ̃
pjq
Re P H

1pDq

0 “ L
λ

pjq

Im

rλ̃
pjq
Ims “

ż

D

∇upjqIm ¨∇λ̃
pjq
ImdD ´

ż

BD

k0u
pjq
Re λ̃

pjq
ImdBD(2.13)

´

ż

D

λ̃
pjq
Im

“

k2
0p1` qwqu

pjq
Im ` k

2
0qwsu

pjq
Im

‰

dD, @λ̃
pjq
Im P H1pDq

We note that the weak state equation pair has a unique solution in H1pDq [11]. Once
we have solved this state equation pair, we can calculate the adjoint pairs, pλjRe, λ

j
Imq,

by solving the weak adjoint equations obtained by taking variations with respect to

ũ
pjq
Re , ũ

pjq
Im for all j “ 0, ..., s:

0 “ L
u

pjq

Re

rũ
pjq
Re s “

1

|Θpsq|

ż

D0

`

u
pjq
Re ` su

pjq
Re

˘

ũ
pjq
RedD0

`

ż

D

∇ũpjqRe ¨∇λ
pjq
RedD ´

ż

D

λ
pjq
Rek

2
0p1` qwqũ

pjq
RedD(2.14)

´

ż

BD

k0ũ
pjq
Reλ

pjq
ImdBD, @ũ

pjq
Re P H

1pDq,

0 “ L
u

pjq

Im

rũ
pjq
Ims “

1

|Θpsq|

ż

D0

`

u
pjq
Im ` su

pjq
Im

˘

ũ
pjq
ImdD0

`

ż

D

∇ũpjqIm ¨∇λ
pjq
ImdD ´

ż

D

λ
pjq
Imk

2
0p1` qwqũ

pjq
ImdD(2.15)

`

ż

BD

k0ũ
pjq
Imλ

pjq
RedBD, @ũ

pjq
Im P H1pDq.

The proof for the existence and uniqueness of the solution to general elliptic equations
with Robin boundary conditions in H1pDq can be found in [16] and extends to the
adjoint equation pair, which differs from the state equation pair only in its source
term. An argument similar to [11] can then be applied to show the existence and
uniqueness of the solutions.

After we have calculated the state and adjoint variables for all scenarios, we can
assemble the nth component of the gradient of the Lagrangian with respect to vn:

(2.16)
`

∇vL
˘

n
“ ´

s
ÿ

j“0

ż

Ω̂n

ˆ

k2
0qpu

pjq
Reλ

pjq
Re ` u

pjq
Imλ

pjq
Imq` k

2
0qpsu

pjq
Reλ

pjq
Re ` su

pjq
Imλ

pjq
Imq

˙

dΩ̂n.

One can show, as illustrated in [19, Lemma 2.30], that the weak gradient equation
Lvrṽs satisfies

(2.17) Lvrṽs “ x∇vL, ṽyRN “ xĴ 1pvq, ṽyRN @ṽ P RN .

Because v is a continuous finite-dimensional decision variable during the relaxation
process, we can produce the strong gradient (which is also the weak gradient) by
differentiating (2.11) with respect to v. Following [19, Lemma 2.21],

ˆ

Ĵ 1pv˚q
˙T

pv ´ v˚q ě 0 @v P V “ tv : 0 ď v ď 1, v P RNu(2.18)

are the necessary optimality conditions of the reduced space formulation,

(2.19) minimize
0ďvď1

Ĵ pvq “ 1

2|Θpsq|

s
ÿ

j“0

}Sθj pvq ` supjq}22,D0
,
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with Sθj being the solution operator Sj : v Ñ uj for incidence angle θj .

3 Solving the Continuous Optimal Design Problem In this section we
describe our discretization and then show how we solve the continuous design problem
using a reduced-space method.

3.1 Discretization of State and Adjoint Equations Here we show how to
solve discretizations of the state and adjoint PDEs and compute (discretized) gradi-
ents that can be used in a reduced-space approach. To solve the state and adjoint
PDEs we use a Galerkin FEM [12]. We decompose our physical domain D into a
computational domain made up of uniform triangle elements, Ei, with length and
height h as illustrated in Figure 1b, such that

(3.1) D “
ď

i

Ei and
`

EizBEi
˘

X
`

EjzBEj
˘

“ H, @i ­“ j.

We also assume that each control element Ωn covers a fixed number of finite elements
Ei, as shown in Figure 1b.

We construct an approximate solution to the state and adjoint variables using
piecewise linear test functions on our finite elements, giving linear test functions that
have compact support on their element. We then approximate the solution by a linear
combination of the test functions for the jth scenario:

uh,jRe “

Rphq
ÿ

i“1

ui,jReφi, uh,jIm “

Rphq
ÿ

i“1

ui,jImφi, λh,jRe “

Rphq
ÿ

i“1

λi,jReφi, λh,jIm “

Rphq
ÿ

i“1

λi,jImφi,

(3.2)

where ujRe,u
j
Im,λ

j
Re, and λjIm are the coefficient vectors of our expansion that are

determined by the FEM (we use boldface to indicate finite-dimensional vectors in the
remainder). Here, Rphq is the number of elements in the discretization for a fixed
step size h, and we choose piecewise linear test functions.

Given a v (and hence, w), we substitute (3.2) into (2.12), (2.13), (2.14), and
(2.15). This approach allows us to find the coefficients by solving a linear system of
equations that defines our approximate solution to the state and adjoint equations
over the domain D. The resulting linear systems of equations (for fixed v) is obtained
by substituting our trial solution into the real and imaginary state equations

(3.3)

„

Apvq Bpvq
´Bpvq Apvq

 „

ujRe

ujIm



“

„

fjRepvq

fjImpvq



for the jth incidence angle, where

„

Apvq



i,l

“

ż

D

∇φi¨∇φldD`
ż

BD

k0φiφldBD´

ż

D

k2
0

ˆ

1`q

ˆ N
ÿ

n“1

vn1ΩnzBΩn

˙˙

φiφldD,

„

Bpvq



i,l

“

ż

BD

k0φiφldBD,

and
„

fjRepvq



i

“

ż

D

k2
0q

ˆ N
ÿ

n“1

vn1ΩnzBΩn

˙

ū
pjq
ReφidD.

We note fjIm is defined analogously by replacing ū
pjq
Re by ū

pjq
Im .
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Next we write down the systems for the adjoint variables associated with the real
and imaginary adjoint equations. We note that the weak adjoint equations depend
on the solution to the state equations. In the discretized adjoint equations we use the
discretized solution found by solving the state equations as an approximation to the
state. The system for the adjoint variables is

(3.4)

„

Apvq ´Bpvq
Bpvq Apvq

 „

λjRe

λjIm



“

„

gjRepvq

gjImpvq



for the jth incidence angle, where

„

gjRepuq



i

“ ´
1

|Θpsq|

ż

D0

`

uh,jRe ` ū
pjq
Re

˘

φidD0

and

„

gjImpuq



i

“ ´
1

|Θpsq|

ż

D0

`

uh,jIm ` ū
pjq
Im

˘

φidD0

are affine functions of the states, u.
Once we have found the solution to the state and adjoint equations, we construct

an approximation of the nth component of the reduced gradient,
`

J 1

pvq
˘h

n
, by using

a tensorized two-point Gauss-Legendre quadrature rule to approximate

`

∇vĴ
hpvq

˘

n
“ ´

s
ÿ

j“0

ż

Ω̂n

ˆ

k2
0qpu

h,j
Re λ

h,j
Re ` u

h,j
Im λ

h,j
Im q ` k

2
0qpū

h,j
Re λ

h,j
Re ` ū

h,j
Im λ

h,j
Im q

˙

dΩ̂n.

to order Oph2q, which is consistent with the discretization error of the PDEs.

3.2 Reduced-Space Method for Continuous Design The derivation in
the preceding section shows that we can write the finite-dimensional approximation
of (2.4) as

(3.5) minimize
vPr0,1sN

Ĵhpvq “
1

2|Θpsq|

s
ÿ

j“0

}Shθj pvq ` ū
pjq
h }

2
2,D0

,

where Shθj pvq is the solution operator for the FEM mesh of size h given by the system

(3.3) with angle θj . The derivation of the reduced gradient, ∇vJ
hpvq, is given in

(3.1), and we apply a reduced-space optimization approach using a quasi-Newton
approximation of the Hessian.

We note that the structure of the discretized state and adjoint equations (3.3) and
(3.4), respectively, implies that this optimization problem is nonconvex, because the
state equations are bilinear in v and u. We investigate the effect of this nonconvexity
in Section 5.

4 Solving the Mixed-Integer Design Problem The finite-dimensional ap-
proximation of the nominal and uncertain MIPDECO (2.4) and (2.5), respectively,
become finite-dimensional pure integer nonlinear optimization problems:

(4.1) minimize
vPt0,1uN

Ĵhpvq “
1

2
}Shθ pvq ` ūh}

2
2,D0

9



and

(4.2) minimize
vPt0,1uN

Ĵhpvq “
1

2|Θpsq|

s
ÿ

j“0

}Shθj pvq ` ū
pjq
h }

2
2,D0

,

respectively, where Shθ pvq is the solution operator defined in (3.3).
The structure of (4.1) and (4.2) involving the solution operators Shθ pvq makes it

difficult to apply the standard MINLP solvers (e.g., [1, 4, 13]) that require analytic
expressions for all the functions. One approach might be to include the discretized
PDEs (3.3) and (3.4) directly as constraints. However, we found on other MIPDECOs
that such an approach does not result in an MINLP that can be solved by modern
MINLP solvers. Hence we consider a heuristic approach as described next.

Our approach for solving the MIPDECOs, (4.1) and (4.2), is a two-phase method.
We first solve a relaxation, (2.19) and round its solution. We then apply a discrete
steepest-descent trust-region approach to improve this rounded solution. Our ap-
proach builds on the method in [10] and can be interpreted as a rounding heuristic
followed by repeated application of local branching [9, 14]. Unlike local branching,
however, we use only first-order information to solve a sequence of approximations
enforcing descent from one iteration to the next. As a result, each trust-region sub-
problem requires the solution of the discretized forward and adjoint PDEs, (3.3) and
(3.4), respectively, making it computationally efficient for MIPDECOs. Moreover, the
trust-region problem itself can be solved efficiently as a knapsack problem.

4.1 Rounding Heuristic After solving the relaxation, we use a rounding
heuristic with rounding threshold τ ,

(4.3) Rτ pvnq “

#

1 if vn ě τ

0 otherwise.

A popular rounding heuristic is τ “ 0.5. However, we chose τ “ 0.8. We have
observed in our numerical computation that using this value of τ yields an objective
value that is at least 10 percent lower than using τ “ 0.5.

4.2 Steepest-Descent Trust-Region for MIPDECO Here we describe our
steepest-descent trust-region approach to improve the rounded solution. The trust-
region algorithm can use any feasible v P t0, 1uN as a starting guess. However, we
use the rounded solution of the continuous relaxation (2.19). On the kth iteration,
the algorithm tries to produce a better design by changing at most ∆k elements of
vpkq to improve the cloaking capability of our design. The algorithm terminates once
∆k ă 1, which means that no local improvement could be found and reducing ∆k

further would not yield a better point. The algorithm is shown in Algorithm 4.1.
We interpret Algorithm 4.1 as a trust-region method for solving MIPDECOs.

We choose the l1-norm trust region because it is equivalent to the hamming distance
between v and vpkq, and hence floor p∆kq corresponds to the maximum number of
components of v that can change from their current value vpkq. One can see easily
that the trust-region constraint }v ´ vpkq}1 ď ∆k is equivalent to the following affine
constraint,

(4.4)
N
ÿ

i“0
v

pkq

i “0

vi `
N
ÿ

i“1
v

pkq

i “1

p1´ viq ď ∆k,
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Algorithm 4.1 Steepest-Descent Trust-Region Algorithm.

Given initial trust-region radius ∆0 “ ∆̄ ě 1 and initial guess vp0q P t0, 1uN

Select an acceptance step parameter ρ̄, and set k Ð 0

Evaluate the objective function Ĵ
pkq
h “ Ĵhpvpkqq and the gradient g

pkq
h “ ∇vĴ

hpvpkqq
while ∆k ě 1 do

Solve the trust-region (knapsack) subproblem for pv:

pv “ argmin
v

g
pkqT

h

´

v ´ vpkq
¯

` Ĵ
pkq
h

subject to }v ´ vpkq}1 ď ∆k

v P t0, 1uN

Evaluate the objective Ĵhppv, uppvqq by solving state equations with pv

Compute the ratio of actual over predicted reduction: ρk “
Ĵpkq

´Ĵppv,uppvqq

´

`

gpkq

˘T`

pv´vk
˘

if ρk ą ρ̄ then

Accept the step: vpk`1q “ pv, and evaluate the gradient gpk`1q “ Ĵ 1pvpk`1qq

if }vpk`1q ´ vpkq}1 “ ∆k, then increase the trust-region radius ∆k`1 “ 2∆k ;

else if ρk ą 0 then

Accept the step vpk`1q “ pv, and evaluate the gradient gpk`1q “ Ĵ 1pvpk`1qq

Keep trust-region radius unchanged ∆k`1 “ ∆k

else

Reject the step, set vpk`1q “ vpkq, and copy the gradient gpk`1q “ gpkq

Reduce the trust-region radius ∆k`1 “ floor
`

∆k

2

˘

Set k Ð k ` 1

resulting in a knapsack constraint. We note that the binary knapsack problem can be
solved in polynomial time. The step acceptance and step rejection criteria are taken
directly from the nonlinear trust-region method; see, for example, [15].

5 Numerical Experiments In this section we describe our experience in solv-
ing the nominal cloak design (4.1) and the cloak design under uncertainty (4.2). We
start by stating the common features of both experiments. We examine the convexity
properties of our design problem and then present the results for the nominal and
uncertain design in turn.

5.1 Experimental Setup We consider the cloaking of three different domains
D1

0, D2
0, and D3

0 given by

(5.1)

D1
0 “ tx, y | ´ 0.6 ď x ď 0.6 0.7 ď y ď 1u pRectangleq

D2
0 “ tx, y | 0.7 ď x ď 1 0.7 ď y ď 1u pSquareq

D3
0 “ tx, y | px´ .85q2 ` py ´ .85q2 ď p.1q2u pCircleq,

which are illustrated in Figure 2. We run all our tests using a MacOS desktop
with a 4-core Intel processor working at 3.3 GHz. We use the FEniCS package in
Python [2] version 2017.2.0 to solve the state and adjoint PDEs using piecewise lin-
ear basis functions, which uses PETSc [3] for the linear algebra. In addition we use
the FEniCS default two-point Gauss quadrature method to build the components of
the gradient. To solve the relaxation, we use the Toolkit for Advanced Optimization

11
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Fig. 2: Illustration of the three domains to be cloaked. The computational domain,
D, is given in yellow. The domain pΩ where the cloak is constructed is given in red.
The domain that we aim to cloak is given in green for the instances D1

0, D2
0, and D3

0.

(TAO) [8] with the “blmvm” solver, which is a limited-memory backtracking quasi-
Newton method for solving bound-constrained problems. We use CPLEX 12.8.0.0 to
solve our trust-region knapsack problem. In our trust-region method, we use ρ̄ “ .75,
as recommended by [15], and an initial trust-region radius of ∆0 “ 256. All numeri-
cal experiments use the following set of common parameters: wave number k0 “ 6π,
material constant q “ 0.75, and cloak location pD Ă D, where

(5.2) D “
“

´ 1, 1
‰

ˆ
“

´ 1, 1
‰

and pD “

„

´
5

8
,

5

8



ˆ

„

´
5

8
,

5

8



.

Preliminary numerical simulations indicate that a 128ˆ128 mesh of finite elements
is the best balance between an efficient solution of the state and adjoint equations and
a reliable gradient evaluation. We create six test problems each for the nominal and
uncertain design by taking the three cloaking regions from (5.1) and two incidence
angles for each region, namely, θ “ π

4 and θ “ π
2 in the nominal design. In the case

of the design under uncertainty, we consider the same two nominal angles with an
uncertainty set of ˘π

4 , giving θ P
“

0, π2
‰

and θ P
“

π
4 ,

3π
4

‰

, respectively.

5.2 Effect of the Nonconvexity We investigate the nonconvexity of our op-

timal design problem by defining a parametric function w : r0, 1s Ñ L2pΩ̂q,

(5.3) wptqpx, yq “ tw1 ` p1´ tqw2, where wk “
N
ÿ

n“1

vkn1ΩnzBΩn
, for k “ 1, 2,

for the particular choice

(5.4) v1
n “

#

1 n even

0 n odd
and v2

n “

#

1 n odd

0 n even.

It follows that 0 ď wptq ď 1, @t P r0, 1s, and thus wptq is a feasible point for the
relaxation. We then discretize the interval r0, 1s into 100 discrete points, t1, ..., t100,
calculate wptiq for i “ 1, .., 100, and numerically solve the PDE constraint in (2.4)
using w :“ wptiq. Next, we evaluate the objective Jhpwptqq on a 128ˆ 128 mesh and
plot Jhpwptqq versus t for the circle, square and rectangle geometries for θ “ π

4 ,
π
2 , for
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a 20 ˆ 20 cloak to demonstrate that the objective function is nonconvex; see Figure
3.

In all cases we see that the objective function is a nonconvex function of t. Be-
cause of this nonconvexity, the quasi-Newton method yields only a local minimum.
Consequently, we cannot guarantee that the objective associated with the solution of
the relaxation found is a valid lower bound on the integer solution. In fact, we observe
that even the rounding step can improve/reduce the objective value.
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Fig. 3: Nonconvexity of the objective function for a single angle of attack.

5.3 Results for the Nominal Problem Next, we evaluate how well the
trust-region method performs from random starting points for all cloaking domains
on a 20ˆ20 mesh and a 40ˆ40 control mesh. For each instance, we create 25 random
samples of v P t0, 1uN , solve for the state, and plot the corresponding objective value.
We then use each of these samples v as a starting guess for our trust-region method,
with θ “ π

4 , and plot the objective at the end. The results are shown in Figure 4.
We observe that not only has the trust-region method reduced the objective func-

tion value in all cases but also that the variance of the final objective value, is signif-
icantly lower.

Next, we investigate solving the relaxation of (4.1), with TAO for the rectangular
domain with θ “ π

2 for the 20 ˆ 20 and the 40 ˆ 40 control mesh (Figures 5a and
5d respectively). We note that both the objective function value (Figures 5b and
5e) and the norm of the projected gradient (Figures 5c and 5f) are reduced; in both
cases, TAO reduces the projected gradient below 10´3. We also note that the optimal
solution for both mesh sizes is similar.

Next, we apply our rounding strategy (4.3) to obtain a rounded solution to use as
a feasible starting point for our trust-region method. We have observed numerically
that starting the trust-region method with an initial starting point of the rounded
relaxation yields a lower objective value when compared to starting the trust-region
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Fig. 4: Trust-region method applied to 25 randomly generated samples for θ “ π
4 and

three cloaking domains. The solid lines show the objective function value at initial
guess and the dashed lines of the corresponding color show the objective value after
the trust-region method terminated.
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Fig. 5: TAO relaxation results on the rectangular region with θ “ π
2

for 20ˆ 20 control mesh (top row) and 40ˆ 40 control mesh (bottom row).

method from a randomly generated design.
In Figures 6c and 6f we show a log10 plot of the scattering field, log10p|u ` ūθ|q,

and show that we reduce the integrand of the objective value in the region of interest
to a small value. In addition, the gradient over the cloaking region, as shown in
Figures 6b and 6e is small, indicating that we have likely found a local optimum to
(4.1). We also observe that the final integer cloak is similar to the relaxation, which
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indicates that relaxation is a good initial guess. When we compare the final discrete
design in Figure 6 with the solution of the continuous relaxation in Figure 5, we note
that the two designs are similar.
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Fig. 6: Results of the trust-region method applied to the rounded relaxation for θ “ π
2

for cloaking domain D1
0. The top row shows the 20ˆ20 results, and the bottom row

shows the 40ˆ40 results.

In Figure 7 we show the progress of our trust-region method in terms of objective
function values and trust-region radii as a function of iteration for the 20ˆ20 and
40ˆ40 control meshes. We observe that our trust-region method is successful at
reducing the incumbent objective function for the small trust-region radii regime,
making steady improvement.

The complete set of results for the three cloaking domains is shown in the elec-
tronic supplement SM1. In Tables 1 and 2 the first column shows the domain and
the second column shows the size of the control mesh. We report the CPU time in
seconds for our trust-region method in Tables 1 and 2 for the nominal angle θ “ π

4
and θ “ π

2 , respectively. The tables summarize the computational effort required to
solve the MIPDECO. The first three measures show the CPU time of the relaxation
solve, the CPU time of the forward (state), adjoint and gradient computation, and
the CPU time of the knapsack solve. The CPU time for PDEs/gradient includes com-
putational effort required to build wpvq. We include this to highlight the additional
computational time required going from 20ˆ 20 to 40ˆ 40 cloak elements, because of
the size of each of the respective gradients.

We observe from Tables 1 and 2 that the computation time for solving the knap-
sack problems, denoted as MIPs, is negligible. We also observe that the number of
trust-region iterations required to meet our termination condition is modest. The
trust-region methods time is divided into the amount of time it takes to solve the
PDEs, build the gradient, and then solve the knapsack problem. We note that the
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Fig. 7: Trust-region progress for 20ˆ20 and 40ˆ40 control mesh.

Table 1: CPU times(s) for nominal relaxation and PDE solves, as well as trust-region
computation on the 128ˆ 128 mesh with θ “ π

4 .

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D1
0 20ˆ 20 302.48 98.23 0.26 15 SM2

D2
0 20ˆ 20 125.93 122.85 0.59 20 SM10

D3
0 20ˆ 20 35.27 121.39 0.42 20 SM18

D1
0 40ˆ 40 1497.04 420.39 0.51 20 SM6

D2
0 40ˆ 40 141.06 1789.25 1.48 79 SM14

D3
0 40ˆ 40 196.24 1405.30 1.42 68 SM22

number of iterations required to solve (4.1) grows only moderately as we increase the
control mesh from 20ˆ20 to 40ˆ40, even though the design space grows exponentially.

In Table 3 we report numerical values of the objective associated with the nominal
angles θ “ π

4 and θ “ π
2 . The table contains three values: the relaxed objective,

Ĵpurelaxq, the rounded relaxation objective function value, Ĵpuroundq, and the trust-
region objective function value Ĵputrustq. In all simulations we are able to reduce the
objective for the circle and square cases to a reasonably small value. The objective
associated with the rectangle is much larger by comparison, which is due to its having
a larger area. We see in several cases that our trust-region method is able to reduce
the objective value. We observe that the relaxed objective function value does not
always give a lower bound on the solution. In fact, in some cases, simply rounding
already reduces the objective function value. We believe that this behavior is a result
of the nonconvexity of our problem.

5.4 Results for the Uncertainty Problem We now present our results for
the design under uncertainty, (4.2). In Figure 8 we compare the design found for the
40ˆ40 instance for a nominal angle of θ “ π

4 and the design found from solving the
uncertainty problem for 15 angles on

“

0, π2
‰

for D1
0, D

2
0, and D3

0. Similar results for
the nominal angle of θ “ π

2 can be found in the electronic supplement SM1.We see a
clear difference in design for the rectangle geometry.
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Table 2: CPU times(s) for nominal relaxation and PDE solves, as well as trust-region
computation on 128ˆ 128 mesh with θ “ π

2 .

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D1
0 20ˆ 20 76.53 60.31 0.16 11 SM26

D2
0 20ˆ 20 41.77 84.77 0.22 17 SM34

D3
0 20ˆ 20 31.43 89.12 0.17 18 SM42

D1
0 40ˆ 40 202.40 917.72 1.06 40 SM30

D2
0 40ˆ 40 86.24 671.36 0.72 41 SM38

D3
0 40ˆ 40 56.55 872.90 0.98 50 SM46

Table 3: Objective function values for nominal problem.

Problem Instance θ “ π
4 θ “ π

2

Domain Control
Relaxed

Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

Relaxed
Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

D1
0 20ˆ 20 0.0142 0.0321 0.0168 0.0010 0.0017 0.0012

D2
0 20ˆ 20 0.0054 0.0077 0.0052 0.0032 0.0097 0.0036

D3
0 20ˆ 20 0.0015 0.0014 0.0011 0.0002 0.0126 0.0017

D1
0 40ˆ 40 0.0168 0.0219 0.0163 0.0029 0.0030 0.0007

D2
0 40ˆ 40 0.0068 0.0077 0.0032 0.0039 0.0187 0.0031

D3
0 40ˆ 40 0.0019 0.0016 0.0010 0.0010 0.0126 0.0008
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(e) Square uncertain.
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(f) Circle uncertain.

Fig. 8: Cloak designs for design under uncertainty using 15 uniformly distributed
θ P

“

0, π2
‰

and for nominal angle π
4 .
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In Tables 4 and 5 we repeat the computational effort required to solved the
uncertainty simulation for 15 angles. We again take vp0q “ 0.5 as a starting guess in
TAO. As in the nominal case, solving the relaxation takes the most computational
effort compared with the trust-region method. Even though more angles are present
in the uncertainty problem, the number of trust-region iterations does not increase
drastically. As in the nominal case, the computational time in the trust-region method
is dominated by solving the PDEs and constructing the gradient, not by solving the
knapsack problems. Another similarity is the number of iterations required by our
trust-region method, which increases modestly as we go from optimizing over 20ˆ 20
integer variables to 40 ˆ 40. The number of trust-region iterations is not dependent
on the number of angles since we see similar iteration counts between a single angle
and 15 angles. In the electronic supplement SM1 we include plots for all numerical
simulations.

Table 4: CPU times(s) for uncertainty relaxation, PDE/gradient calculation and
knapsack problem on 128ˆ 128 mesh for 15 angles where θ P

“

0, π2
‰

.

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D1
0 20ˆ 20 1094.43 690.49 0.31 19 SM5

D2
0 20ˆ 20 158.04 762.72 0.34 23 SM13

D3
0 20ˆ 20 121.82 418.73 0.11 13 SM21

D1
0 40ˆ 40 1996.71 1005.43 0.23 18 SM9

D2
0 40ˆ 40 355.67 2444.14 0.77 44 SM17

D3
0 40ˆ 40 306.21 2664.15 0.79 48 SM25

Table 5: CPU times(s) for uncertainty relaxation, PDE/gradient calculation and
knapsack problem on 128ˆ 128 mesh for 10 angles where θ P

“

π
4 ,

3π
4

‰

.

Problem Instance Solution CPU Time(s) Trust-Region Solution
Domain Control Relaxation PDEs/Gradient MIPs Iterations Figure

D1
0 20ˆ 20 2093.23 430.97 0.18 17 SM29

D2
0 20ˆ 20 137.17 430.98 0.16 17 SM37

D3
0 20ˆ 20 135.26 361.15 0.13 14 SM45

D1
0 40ˆ 40 2495.73 3900.51 0.91 61 SM33

D2
0 40ˆ 40 326.36 3715.97 0.89 60 SM41

D3
0 40ˆ 40 62.42 5986.25 1.64 105 SM49

In Table 6, we show the solution quality for the uncertainty case. We see that
in many cases, similar to the single angle case, we can reduce the objective function
value below the relaxed objective function value, which is due to the nonconvexity of
our problem.

We also compare the nominal design to the uncertainty design over a range of
angles for the circular domain. We define the function

(5.5) fpθ̃q “ Ĵhpθ̃; vtrustq.
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Table 6: Objectives for uncertainty problem with 15 angles.

Problem Instance θ P
“

0, π2
‰

θ P
“

π
4 ,

3π
4

‰

Domain Control
Relaxed

Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

Relaxed
Objective

Relaxed
Rounded
Objective

Trust
Region

Objective

D1
0 20ˆ 20 0.0927 0.0941 0.0902 0.0773 0.0770 0.0762

D2
0 20ˆ 20 0.0106 0.0107 0.0083 0.0196 0.0210 0.0190

D3
0 20ˆ 20 0.0042 0.0034 0.0028 0.0086 0.0093 0.0082

D1
0 40ˆ 40 0.0818 0.0818 0.0077 0.0614 0.0647 0.0597

D2
0 40ˆ 40 0.0111 0.0101 0.0071 0.0220 0.0220 0.0183

D3
0 40ˆ 40 0.0043 0.0030 0.0017 0.0197 0.0126 0.0090

We take the solution of the trust-region method from the nominal and the uncertainty
case with a given θ̃, solve the state, and evaluate the objective value to obtain fpθ̃q.
We compare the nominal design for θ “ π

4 with the uncertainty design found using 5,
10, and 15 angles from the interval

“

0, π2
‰

on the 20ˆ20 and 40ˆ40 control meshes,

respectively. We evaluate f on θ̃ “
“

0, π2
‰

by breaking the interval into 100 sample
points and then plot the resulting objective value as a function of θ, as shown in in
Figure 9. We observe that the nominal design produces a lower objective value at
π
4 when compared to the uncertain designs, which is expected. However, when we
move away from the nominal angle, θ “ π

4 , we observe that the uncertain design
performs better than the nominal design. We built the nominal design to cloak for a
single angle, so it makes sense that it is superior to the uncertain design at θ “ π

4 ,
which covers several angles. Similarly, because the uncertain design was developed
for several angles, it performs better across a range of angles.
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Fig. 9: Comparison of nominal versus robust cloak design over a range of angles θ.

6 Conclusions In this paper, we introduced a trust-region method to solve
MIPDECO problems. We applied our method, successfully, to construct binary elec-
tromagnetic cloaking devices that are effective at inducing electromagnetic cloaking,
both for deterministic and uncertain incidence waves. The method uses tools that
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are standard in the PDE optimization and mixed-integer programming communities.
Our method starts by solving the relaxation, rounds that solution, and then performs
a modest number of trust-region iterations. The gradient in our trust-region method
is found by using techniques from PDE-constrained optimization. The integer portion
of the MIPDECO problem is dealt with in the trust-region subproblem, which is a
knapsack problem.
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